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Abstract—iVisual, an intelligent visual sensor SoC integrating
2790 fps CMOS image sensor and 76.8 GOPS, 374 mW vision
processor, is implemented on a 7.5 mm X 9.4 mm die in a UMC
0.18 pum CMOS Image Sensor process. Light-in, answer-out SoC
architecture is adopted to avoid possible privacy problems. A
feature processor is designed to eliminate the dataflow mismatch
between processor array and scalar processor to increase 36 %
of average throughput. To increase hardware utilization, an
inter-processor synchronization scheme is adopted to increase
23% of average throughput. Memory access is reduced by 94 %
to save 726 mW of power consumption. A bitplane-based single
port memory structure is adopted to reduce SRAM area. The 205
GOPS/W power efficiency and 1.16 GOPS/mm? area efficiency
are therefore achieved by use of the proposed techniques.

Index Terms—GOPS, intelligent visual sensor, SIMD, single-in-
struction multiple-data, video analysis, vision processor.

1. INTRODUCTION

ISUAL sensors combined with video analysis technology
V can enhance applications in surveillance [1]-[4], health-
care [5], intelligent vehicle control [6], human-machine inter-
face [7] and so on.

Due to the importance and the high computational com-
plexity, hardware solutions exist for video analysis applications
[8]-[10]. Analog on-sensor processing solutions [8] feature the
integration of an image sensor and a 2-D parallel per-pixel pro-
cessor array. However, the precision loss issues of analog signal
processing prevent those solutions from realizing complex al-
gorithms [11]. These solutions also lack flexibility, for they can
handle only frame-in, frame-out operations. Vision processors
[9], [10] provide more feasible solutions for handling complex
algorithms. In those processors, a SIMD processor array is
designed for parallel data in, parallel data out operations, and
another separate processor, we call it decision processor, is
designed for operations with other dataflows. High GOPS num-
bers are realized by increasing the parallelism of the processor
array. However, the dataflow mismatch between the processor
array that produces parallel data and the decision processor
that consumes scalars induces a throughput bottleneck. Take
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Fig. 1. An example illustrating the throughput bottleneck in vision processors.

XETAL-II [10] for example, the data production rate of the
processor array can achieve 430 Gb/s. However, the data con-
sumption rate of the decision processor (named GCP in [10])
is only 2.7 Gb/s. Furthermore, due to the massively-parallel
processor array architecture, the memory access bandwidth in
the vision processors is significant, and this leads to a high
power consumption.

We illustrate the throughput bottleneck in vision processors
with a simple example as shown in Fig. 1. The goal of this ex-
ample is to calculate the minimum intensity valueina 128 x 128
video frame. This operation is commonly used in algorithms like
histogram equalization, contrast enhancement and so on. The
computation can be partitioned into two steps. The first step is to
calculate the minimum intensity value of each column. This can
be done in parallel by using the SIMD processor array scanning
the image from top to bottom, and it takes 255 clock cycles to
process these 32640 operations. The second step is to calculate
the overall minimum intensity value from the minimum values
of columns. Because this operation cannot be parallelized, the
second step has to be handled by the decision processor sequen-
tially. It still takes 255 clock cycles. However, only 255 opera-
tions are processed in this step. The overall system throughput
is thus degraded due to this throughput bottleneck.

Privacy invasion is always a critical issue in setting up visual
sensors around the living spaces because of the danger of re-
vealing video data during the video analysis processing [12]. In
an intelligent visual system with image sensors, frame buffers
and vision processors, the video data can be easily revealed by
monitoring the inter-chip traffic among those components. The
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Fig. 2. The iVisual system architecture.

privacy issues thus exist with the above-mentioned solutions be-
cause of the inevitability of inputting or outputting video data.
iVisual [13] is characterized as follows:

1) High level of integration: iVisual is a light-in, answer-out
SoC integrating CMOS image sensor, 76.8 GOPS vision
processor and 1 Mb storage. No video data need to be re-
vealed outside the chip during the video processing. The
possible privacy problems are therefore avoided.

2) New vision processor architecture: feature processor
eliminates the throughput bottleneck and increases 36%
of average throughput. The inter-processor synchroniza-
tion scheme ensures minimum communication between
processors and further increases 23% of throughput.

3) High power/area efficiency: the 205 GOPS/W power
efficiency is achieved by introducing feature processor,
processing element (PE) register file and instruction-level
gated clock. The 1.16 GOPS/mm® area efficiency is
achieved by introducing feature processor, bitplane
memory structure and reconfigurable storage allocation.

This paper is structured as follows. The top-level system

architecture of iVisual is discussed in Section II. Section III
presents the architecture designs of important modules. The
physical design is described in Section IV, and Section V lists
the measured results and chip features. Finally, Section VI
concludes this work.

II. SYSTEM ARCHITECTURE

Fig. 2 shows the iVisual chip with five major parts: on-chip
CMOS image sensor (CIS), bitplane memory (BM), global
processor (GP), feature processor (FP) and decision processor
(DP). CIS is a high frame-rate, low resolution CMOS image
sensor with read-out circuits. The captured video data are
buffered in BM. The main processing engine of GP is a SIMD
processor array with 128 PEs. GP processes parallel data in,
parallel data out operations. The main data memory of GP is
BM. BM is thus both the output buffer of CIS and the data
memory of GP. DP is a five-stage pipelined processor with
MIPS-like instruction set and architecture. It handles scalar in,
scalar out operations.

To reduce the throughput bottleneck induced by the dataflow
mismatch between GP and DP mentioned in Section I, the FP is
designed for iVisual. FP is a processor dedicated for parallel data
in, scalar out operations to eliminate the dataflow mismatch. As
shown in Fig. 2, the signals in DP can also be sent to GP and FP
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Fig. 4. The inter-processor synchronization scheme.

to control their program execution or change their data. GP, FP,
DP, and BM together form the vision processor in iVisual.

A. Frame Pipeline Scheme

The exposure of CIS might take a long period of time, de-
pends on the environmental lighting. If the three processors (GP,
FP, and DP) have to wait for the exposure before processing
every video frame, the idle time of processors might be long.

To hide this latency, CIS is frame-pipelined with the vision
processor to increase hardware utilization as shown in Fig. 3.
The bottom part of Fig. 3 shows the corresponding hardware
scheduling. When CIS is capturing nth video frame, the three
processors are processing (n — 1)th or earlier video frames.

B. Inter-Processor Synchronization Scheme (IPSS)

To increase the system throughput, the program executions of
GP, FP, and DP are nearly mutually independent. However, the
correct inter-processor data dependencies are still maintained.
Fig. 4 compares the adopted inter-processor synchronization
scheme (IPSS) and the co-processor scheme [9]. Each block
represents a group of operations, and different colors represent
operations of different processors. The arrows represent the de-
pendencies between two groups of operations of different pro-
Cessors.
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Fig. 5. The pixel circuits and read-out architecture of CIS.

In the co-processor scheme, there is only one processor ac-
tive at a time. This can keep the program control simple with the
price of long processor idle time as shown in the upper part of
Fig. 4. In the adopted IPSS, for each instruction, each processor
checks the required hardware resources of the current instruc-
tion. A processor will stop its execution only when it requires
hardware resources from other processors, and those required
resources are not yet available. A simple hand shaking protocol
thus exists among processors to communicate the availability
of resources. On average, the adopted IPSS can increase 23%
of throughput compared with the co-processor scheme due to
the increase of processor utilization. The benchmark adopted to
estimate the throughput increase is a posture classification al-
gorithm. For each instruction, the clock signal in the hardware
resources not required are turned off to save power.

The increase of hardware utilization might result in an in-
crease of peak power. However, in iVisual, most power are con-
sumed by GP and BM, and FP and DP together consume only
11.8% of total power consumption. Therefore, the peak power
increase will not induce problems in physical design.

III. MODULE ARCHITECTURE DESIGN

A. CMOS Image Sensor and the Read-Out Circuits

Fig. 5 shows the pixel circuits and read-out architecture of
CIS. The 3T structure is adopted for pixel cells. The cell area is
enlarged to 7 um X 7 pm to enable high frame-rate capturing. A
parallel read-out architecture is adopted. One set of read-out cir-
cuits is shared by four pixel columns. It is theoretically proved
that high gain read-out circuits can effectively increase the SNR
[14]. We built such a gain stage with four adjustable gains.

For the ADC design, SAR-based architecture [15] and ramp-
based architecture [16] are combined. As the bidwidth of con-
verted samples increases, the SAR-based architecture enjoys a
linear increase of conversion steps with the price of exponential
area increase; on the contrary, the ramp-based architecture en-
joys a linear area increase with the price of exponential increase
of conversion steps. In the adopted 8-bit ADC, the conversion
of the five most significant bits is based on SAR ADC scheme,
and the conversion of the least significant three bits is based on
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Fig. 6. The ADC circuits of CIS.

the ramp-based scheme. Compared with the conventional SAR
architecture, the required cycle count for one sample conver-
sion is increased from 18 cycles to 20 cycles per sample, while
ADC area is reduced by 48.1% due to the reduction of capacitor
array area. Further increasing the number of bits processed with
the ramp-based approach will result in a greater degradation of
conversion speed. For example, if four bits are processed with
SAR approach and four bits are processed with ramp-based ap-
proach, the area can be further reduced by 7.1%. However, the
conversion speed will be reduced by 30%. The overall read-out
process takes 35 clock cycles per column per row, and a set of
read-out circuitry is shared by four columns. With the rolling
shuttle scheduling and a 50 MHz clock rate, 2790 fps peak frame
rate can be achieved.

Both exposure time and read-out speed influence the frame
rate. Enlarged sensor cells and pre-ADC gain stage reduce the
exposure time, and the parallel read-out architecture reduces the
read-out time. In our read-out scheme, if the exposure time is
less than 355 ps, the overall frame rate will be determined by
the read-out speed.

B. Global Processor

Fig. 7 shows the architecture of GP. GP handles parallel data
in, parallel data out operations. The input data come from BM,
and the output data can be written back to BM or sent to FP. DP
signals can be inputted to control the program execution of GP.
There is also a high bandwidth data link between DP and GP to
communicate parallel data.

The main execution unit of GP is a SIMD processor array
with 128 PEs. 51 instructions are designed for GP. To reduce
pipeline control circuits, the PEs are not pipelined. Each PE
has a unique index and its own conditional control circuits to
enhance the flexibility. Compound instructions are utilized for
logic and arithmetic instructions. A conditional control, input/
output bitwidth control, input/output padding and an arithmetic
operation can be processed in a clock cycle.

In previous works [9], [10], the PEs read and write the data
memory every clock cycle. Because there are 128 PEs in a SIMD
array, this parallel memory access induces a high memory ac-
cess power according to our analysis. To reduce the power con-
sumption, an additional memory hierarchy, named PE register
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file (PERF), is introduced. The PERF lies between the PE array
and BM as shown in Fig. 7. The intermediate results during the
video analysis processing can be buffered in PERF rather than
BM to reduce access frequency of BM, and 94% of BM access is
reduced on average. The benchmark used to estimate the BM ac-
cess reduction ratio is the posture classification algorithm. This
memory access reduction is estimated to be 726 mW. The PERF
itself consumes 134 mW.

Different operations may require different types of data or-
ganization. A single-cycle data reorganization unit is embedded
in the data switching network of GP. Fig. 8 shows this data
reorganization scheme in GP. Four modes are supported: data
downsample/upsample, data rotation, data interleaving and data
broadcasting.

C. Bitplane Memory

In video analysis algorithms, video data with different
bitwidths usually appear. For example, a video object mask
takes only one bit per pixel. In these cases, the byte-aligned
storage structure is wasting. To increase the storage density, bit-
plane-based physical structure is adopted in iVisual as shown in
Fig. 9. The grey regions in Fig. 9 represent an example showing
video data with three bits per pixel stored in the bitplane
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memory. Each memory bank can store eight video frames with
one bit per pixel. The GP/CIS provides logical address and the
bitwidth of the video data to be accessed. The corresponding
physical address for each memory bank will then be automat-
ically generated by hardware, and the video data will also be
reordered to the correct sequence. According to a benchmark
of motion object segmentation, the bitplane-based structure can
reduce 41% of SRAM requirement. This benchmark includes
connected component extraction, different types of FIR filtering
operations, dilations and erosions. Because the bitwidths of
data vary during the processing, the bitplane-based storage
structure can effectively reduce the storage requirement.

BM is both the output buffer of CIS and the data memory of
GP as mentioned in Section II. To reduce 64% of SRAM area,
the data ports of BM are shared by both CIS and GP. The data
port collision conditions are automatically handled by hardware.
Thanks to the PERF reducing 94% of BM access from GP, the
port collision probability is below 0.1%.

The bitplane-based physical structure reduces the SRAM area
from 41 mm? to 24 mm?2, and the data port sharing further re-
duces the SRAM area from 24 mm? to 9 mm?. The above two
techniques together save 43% of the total are of the vision pro-
CEessOr.

Storage requirements of 20 representative algorithms about
video analysis and image enhancement are analyzed, and the
1 Mb storage size combining with the bitplane-based structure
is concluded to be sufficient to handle all analyzed algorithms.
In case of insufficient storage, off-chip storage can be utilized
through use of the embedded AHB 2.0 master interface [17].

D. Feature Processor and Decision Processor

FP is a processor dedicated for parallel data in, scalar out op-
erations. It is mentioned in Section I that there was a throughput
bottleneck between the processor array and the decision pro-
cessor due to the dataflow mismatch between them. FP is there-
fore designed to eliminate this throughput bottleneck. The input
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TABLE 1
ILLUSTRATION OF THE FP INSTRUCTION SET

Feature Extraction Operations (17 Instructions)
Operation Description

Application Examples

Sum of input samples with 8-bit or 16-bit input data (signed or unsigned)

Bitwise Logic Operations
Count the number of enabled samples

Extract the minimum or maximum value among input samples (signed or unsigned)
Extract the index of the input sample with minimum or maximum value (signed or unsigned)
Count the number of samples with value in certain range (signed or unsigned)

(1] [2] [3] [4] [5] [6] [19]
(1] [2] [3] [4] [5] [6]

(1] [2] [3] [4]

(11 [2] [3] [4] [3] [6]

[1] [4] [19]

[31 [4] [19]

Data Manipulation (7 Instructions)
Operation Description

Set value of specified input sample
Shift of all input samples

Change processing mode between 8-bit and 16-bit input bitwidth

Padding of input samples
Clear or enable all enable signals

Execution Control (9 Instructions)
Operation Description

Jump / Jump if results not zero / Jump according to external signal value

Set break points / break if external signal enabled
Wait for external signals
Non-operation / end of file
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Fig. 10. The FP architecture.

data are the parallel data from GP, and the output is the scalar
sent to DP as shown in Fig. 10.

Table I summarizes the instruction set of FP. 17 feature ex-
traction instructions are designed after analyzing the feature ex-
traction operations of video analysis algorithms and the Intel
OpenCV library [19]. For example, the index of the minimum
input sample can be extracted for calculating object bounding
box; the number of input samples with value within a certain
range can be extracted for calculating color histograms. Another
16 instructions are designed for data manipulation and program
execution control.

To enable the object-based video analysis, the input samples
can be enabled or disabled by appending an enable bit on each
input sample. When extracting features of a video object, the ob-
ject mask can be inputted as enable bits, and the FP will extract
only the information of the specific object. To further enhance
the flexibility, input data can be configured as 8-bit or 16-bit
data, signed or unsigned data.

Fig. 10 shows the FP architecture. The ALU is designed as
#ALUs connected in a tree structure rather than a sequential
structure to ensure a short timing path. According to our imple-
mentation results, a 128-to-1 feature processor with 16-bit data
bitwidth enjoys a timing path shorter than an 8-bit by 8-bit mul-
tiplier.

We compare the throughput between vision processor with FP
and without FP by using the minimum intensity value example
mentioned in Section I. The goal of this example is to calculate
the minimum intensity value in a 128 x 128 video frame. We
can use GP to calculate the minimum intensity value of each
column in parallel, and it takes 255 clock cycles. The second
step is to calculate the overall minimum intensity value from the
minimum values of columns. Without FP, this has to be handled
by DP processing sequentially, and it takes 255 clock cycles.
With FP, however, the second step is a single cycle instruction.

DP is a 32-bit five-pipelined processor with MIPS-like in-
struction set and out-of-order control on instructions involving
inter-processor communication. The register file of DP is en-
larged to access the parallel data in GP through a high band-
width link, and 256 Byte data can be communicated between
GP and DP in a single cycle. The DP can also control the pro-
gram execution of GP and FP.

IV. PHYSICAL DESIGN

The design flow of iVisual comprises a full-custom design
flow, a cell-based design flow and a flow for co-simulation
and layout-merging. FPGA-workstation co-simulation is also
included for the simulation of huge test pattern.

A software system model including external traffic is firstly
built for performance estimation. The specifications of CIS and
vision processor are defined in this step.

CIS is designed with the full-custom flow, and the vision pro-
cessor is designed with the cell-based design flow. In addition to
being designed separately, the CIS and vision processor are also
simulated together during the design process. The pre-layout
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Fig. 11. An architectural comparison between iVisual and the state of the art.

and post-layout transistor-level netlists are simulated with the
RTL and gate-level Verilog netlists by mixed-signal co-simula-
tion tools to ensure the functionality and performance.

Due to the huge bandwidth of the parallel data in the pro-
cessor array, signal routing area is an important issue in the place
and route (P&R) phase. In the design of iVisual, a bottom-up
P&R methodology is adopted. The GP is partitioned into eight
PE groups. The whole design is firstly coarsely routed given the
coarse floorplan of modules. The the PE group boundary infor-
mation is then extracted such that each PE group can be placed
and routed independently. The routed modules are then merged
with necessary routing modification. Finally, the CIS layout,
P&R information and the cell library are merged together.

23 design tools are utilized in the iVisual design process for
simulation, verification, layout and so on.

V. EXPERIMENTAL RESULTS

A. Architectural Comparisons

To make an architectural comparison with the state of the arts,
we built an architecture model according to our knowledge of
XETAL-II [10]. The model contains a processor array, a 32-bit
RISC and a flag addition/selection unit. The number of PE is
scaled to be the same as iVisual.

Fig. 11 shows such an architectural comparison of throughput
in terms of required clock cycles per video frame. Connected
component extraction is used in nearly all kinds of video ob-
ject segmentation algorithms; intensity histogram is widely used
in image enhancement and feature extraction; image subsam-
pling is essential for multi-resolution object detection; ellip-
tical matching is widely used for human detection and posture
classification. Due to the introduction of FP, the throughput of
connected component extraction, intensity histogram and ellip-
tical matching can be increased as shown in the figure. The
throughput increase of image subsampling comes from the in-
troduction of the data reorganization unit in GP.
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TABLE II
CHIP SUMMARY

Technology UMC 0.18um 2P4M CMOS
Image Sensor Process

Core Area 7.5mmx9.4mm
Package BGA 256pin
Working Frequency 50MHz
Supply Voltage 2.1V
Temperature 25°C
Power Consumption CIS: 81mW
Vision Processor: 374mW

Peak Throughput 76.8GOPS
Internal Buffer 1Mb
External Interface Two AHB 2.0 Masters
CIS Resolution 128 x 128
Pixel Structure 3T Pixel Structure

B. Chip Implementation

iVisual is implemented on a 7.5 mm X 9.4 mm die in a UMC
0.18 pm two-poly four-metal (2P4M) CMOS image sensor
process. Fig. 12 shows the chip micrograph. Table II shows
the chip summary. iVisual embedded 1 Mb bitplane-structured
on-chip storage and can achieve 76.8 GOPS of peak throughput.
The average power consumption is 374 mW for vision pro-
cessor and 81 mW for CIS. The adopted test pattern for power
measurement contains image capturing, histogram equaliza-
tion, image upsample/downsample and on-chip/off-chip video
data access. The shmoo plot generated by the Agilent 93000
series mixed-signal SoC test platform is shown in Fig. 13.

C. Measured Throughput Data

Fig. 14 summarizes the measured CMOS image sensor
responses with different read-out gain settings. The solid lines
are measured in an indoor environment with weak lighting
(estimated to be 50 lux), and the dashed lines are measured in
a dark environment. If the dark environment is perfectly dark,
the dashed lines represent noise signals. As shown in the figure,
the exposure time can be as short as 24.5 us while maintaining
enough SNR through use of the enlarged sensor cells and the
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pre-ADC gain stage to enhance the SNR. High frame rate
imaging is thus achieved.

Table III summarizes the throughput of commonly used
operations for video analysis algorithms. High throughput is
achieved by FP that eliminates the throughput bottleneck and
IPSS that maximizes the hardware utilization. To show the
capability of iVisual while handling complex algorithms, a
posture analysis algorithm is also illustrated in Fig. 15. This
benchmark algorithm comprises a complete video analysis
processing flow including video capturing, image enhance-
ment, motion segmentation, human detection, human tracking
and posture analysis. A throughput of 360 fps is achieved by
iVisual while processing seven people simultaneously in the
video scene.

Fig. 16 illustrates the throughput increase by use of the pro-
posed techniques. The benchmark is the posture classification
algorithm. The average throughput is increased by 36% by in-
troducing the FP to eliminate the throughput bottleneck. The
average throughput is further increased by 23% by introducing
the IPSS to increase the hardware utilization.

TABLE III

133

IVISUAL THROUGHPUT OF COMMONLY-USED OPERATIONS

Operation Description

Throughput

Frame-Level Processing

3 % 3 FIR Filtering

0.25cycle/pixel

Sobel Image Gradient 0.05cycle/pixel
Harris Corner Detector 2.2cycle/pixel
Image Erosion/Dilation 0.05cycle/pixel
3 x 3 Median Filtering 0.48cycle/pixel

Row-Based Pipeline Among GP, FP and DP

6-Dimensional (Affine Model) Motion Estimation

Object Bounding Box Extraction
2-D Projective Histogram
Histogram Equalization

16-Bin Intensity Histogram

7.95cycle/pixel
0.06¢ycle/pixel
0.03cycle/pixel
0.07cycle/pixel
0.13cycle/pixel

Frame-Based Pipeline Among GP, FP and DP

Elliptical Matching

Connected Component Extraction
Horn Optical Flow Calculation
Integral Image on 3 Resolutions
Object Area Extraction

0.74cycle/pixel
3.38cycle/pixel
5.23cycle/pixel
0.88cycle/pixel
0.02cycle/pixel

Posture Classification (sit, stand, lay)

| 11 11 |
| 1 I1 2 11 3 |
| Image |1 Motion 11 Human |
| Capturing | I| Segmentation |l | Tracking |
A T T S S T
| Image 11 Human 11 Posture |
I| Enhancement || | Detection | 1] Classification |l

360fps (while handling 7 people in the scene)

Fig. 15. The iVisual throughput while handling posture classification algo-
rithm.

D. Measured Power Efficiency and Area Efficiency

Fig. 17 shows the impact made by the proposed techniques on
the power efficiency and area efficiency. FP can increase 50%
of peak throughput while consuming only 5% of total power
consumption because of its dedicated structure. The power effi-
ciency and the area efficiency thus is increased by 50% by intro-
ducing FP. The PERF reduces the power consumption of vision
processor by 62%, and the power efficiency is thus further in-
creased. The bitplane-based physical structure and the sharing
of data ports reduces 43% of vision processor area, and the area
efficiency is thus increased.

Fig. 18 shows the comparisons between iVisual and the state
of the arts on power efficiency and area efficiency with process
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Benchmark:
Required Time 280,956 posture classification
(Clock Cycle) el
o/~ 179,579
36% ™, ceeo.. 139,028
23%
GP + DP With FP with IPSS

Fig. 16. The throughput increase induced by the proposed techniques.

Power Efficiency

(GOPS/W) 50%
103
...... 62%
~~~~~~~~~~ 39
Measured wio w/o
FP PERF
Area Efficiency 116
(GOPS/mm?%)
. 50%
0.58 367
............. ° 037
Measured w/o w/o
FP BM

Fig. 17. The impact made by the proposed techniques on power efficiency and
area efficiency.

scaling on [10]. The power scaling is done according to the
dynamic power equation since leakage power in [10] occupies
only 0.3% of its total power. The power efficiency and area
efficiency are greatly increased because of the proposed tech-
niques and a more dedicated processor dataflow. In the power
efficiency comparison, the clock frequency doesn’t matter since
both throughput and power are proportional to the clock fre-
quency.

VI. CONCLUSION

iVisual is an intelligent visual sensor SoC with a light-in,
answer-out architecture to avoid possible privacy problems. On
average, 51% of throughput is increased by use of the proposed
vision processor architecture. Power consumption is reduced by
reducing 94% of memory access; SRAM area is also reduced by
introducing the bitplane-based memory structure and sharing
the data ports. High power efficiency and high area efficiency
are therefore achieved.
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Area Efficiency %
(GOPS/mm?) _
(with process scaling)
51.2 107
121 74 x 4 1.16
|_|o.42 |_| 0.36
IMAP-CE [9] Xetal-ll [10] iVisual
Power Efficiency 76.8
(GOPS/W) 0.37
(with process scaling)
51.2 07 205
325 0.6x4.5
—16 |_|40
IMAP-CE [9] Xetal-ll [10] iVisual

Technology scaling on power (90nm vs 180nm) i
P1go =Pao*(C1g0/Cs0)*(V180/Vao) i

1

1

1

1

1

=Pgx2x(1.8/1.2)
=Pgpx4.5

Fig. 18. The comparisons between iVisual and state of the arts on power effi-
ciency and area efficiency.
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